If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2=6
We move all terms to the left:
2z^2-(6)=0
a = 2; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·2·(-6)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*2}=\frac{0-4\sqrt{3}}{4} =-\frac{4\sqrt{3}}{4} =-\sqrt{3} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*2}=\frac{0+4\sqrt{3}}{4} =\frac{4\sqrt{3}}{4} =\sqrt{3} $
| -12y-20=28 | | 10-2v=-5-10 | | -5x+18=-27 | | 15+6x=32x-11 | | 10y-5y=75 | | 7z-14=0 | | 16x-5=5-14x | | 3/4-x/2=1/3 | | 16x-5=5=14x | | (x-2)=(x-9) | | 12y=28+8y | | 1x-5=-4 | | -(7-4s)=9+s | | 8c+4=4(c-7) | | 19-3(g-5)+4=19 | | 36-5y=4y | | 3(3m+5)=6(m-1) | | 8c+4=4c-28 | | m-19=30 | | 13(9x-12)+2x=-34 | | 6-2(x)=38 | | 9n-3=6n-8 | | (3x+5)+(2x-150=180) | | 4x+2(3x-6)=4x-(1-6x)+11 | | 2+x/5=4 | | p/5=22 | | ∣2x+9∣=15 | | k/7=19 | | 6x2-14x-80=0 | | 3Y-1/2X=8;y | | 8x=65+7x | | 3x-8=115 |